

Testing the Particle Interpretation of the PVLAS Results

Guido Zavattini, Università di Ferrara and INFN-Ferrara

PVLAS has a signal

Many journals have written about our result commenting on its importance, if confirmed

They all talk about a yet undetected particle

This is a possible interpretation of our result which must be verified

•

Linear Birefringence

• A linearly polarised light beam propagating through a birefringent medium will acquire an ellipticity Ψ

Linear Dichroism

- A dichroic medium has a selective absorption of one polarization component
- A linearly polarized light beam propagating through a dichroic medium will acquire a rotation $\boldsymbol{\varepsilon}$

Ellipticity measurement principle

ø Modulate the effect and add a carrier $\eta(\textbf{t})$ to signal at ω_{SOM}

 ${\color{black} \bullet}$ Rotating the field at Ω_{Mag} produces an ellipticity at 2 Ω_{Mag}

Particle production

• Main parameters of the apparatus

- magnet
 - dipole, 6 T, temp. 4.2 K, 1 m field zone
- cryostat
 - rotation frequency ~300 mHz, sliding contacts, warm bore to allow light propagation in the interaction zone
- laser
 - 1064 nm, 100 mW, frequency-locked to the F.-P. cavity
- Fabry-Perot optical cavity
 - 6.4 m length, finesse ~100000, optical path in the interaction region ~ 60 km
- heterodyne ellipsometer
 - ellipticity modulator (SOM) and high extinction (~10⁻⁷) crossed polarisers + Quarter Wave Plate (QWP)
 - time-modulation of the effect
- detection chain
 - photodiode with low-noise amplifier
- DAQ
 - Slow: demodulated at low frequency and phase-locked to the magnetic field instantaneous direction
 - Fast: high sampling frequency direct acquisition

Particle production

Rotation signal = $(1-q)/2 = 2.3 \cdot 10^{-7}$

Outcoming power W from cavity \approx 60 mWatt Converted photons = (W/E_{ph})· (1-q) = 1.5·10¹¹ photons/s

Particle production = 1.5.10¹¹ per second

Ellipticity curve **N** Dichroism curve

Mass m = 0.001 eV; $M = 3.8 \cdot 10^5 GeV$

Comparison with CAST

1.10¹⁰ **CAST** lower bound 1.10^{9} Inverse coupling [GeV] I •10⁸ 1.10^{7} Compatibility region PVLAS Summary plot with B = 5.5 T 1.10^{6} (PRL 96, 110406 (2006)) 1.10^{-4} 0.001 0.01 mass [eV]

apparent discrepancy of 4 orders of magnitude

G. Zavattini - PVLAS Collaboration - Trieste 3/10/2006

INFN

Photon regeneration plans:

24

Name	Place	Laser	Flux of initial γ 's	Magnets	$P_{\gamma\phi\gamma} _{(g,m_{\phi})_{\text{PVLAS}}}$
PVLAS	Legnaro/I	$\lambda = 1064$ nm, $\omega = 1.17$ eV P = 20 - 800 mW, cw $N_r = 5 \times 10^5$	$3 imes 10^{22}/{ m s}$ - $1 imes 10^{24}/{ m s}$	$B_1 = 5 \text{ T} \\ l_1 = 1 \text{ m} \\ B_2 = 2.2 \text{ T} \\ l_2 = 0.5 \text{ m}$	$\sim 10^{-23}$
LIPSS	Jlab/USA	$\lambda=900$ nm, $\omega=1.38$ eV P=3-10 kW, cw $N_r=0$	$1 imes 10^{22}/{ m s}$ - $5 imes 10^{22}/{ m s}$	B = 1.7 T $l = 1 m$	$\sim 10^{-23.5}$
ALPS	DESY/D	$\lambda = 1064 \text{ nm}, \omega = 1.17 \text{ eV}$ Pesti divevilas inizio 2 $N_r = 0$	007 1×10^{22} /s	B = 5 T l = 4.21 m	$\sim 10^{-19}$
BMV	LULI/F	Prim 53 ann fine 2006 4 pulses of 1500 J/day Nr di PVLAS Marzo	1008×10^{21} /pulse	B = 11 T $l = 0.25 m$	$\sim 10^{-21}$
APFEL	DESY/D	$\lambda=32$ nm, $\omega=38.7$ eV $8 imes10^3$ pulses of 50 μ J/sec $N_r=0$	$8 imes 10^{12}/{ m pulse}$	B = 2.24 T $l = 6 m$	$\sim 10^{-19.5}$
????	CERN/CH	$\lambda = 1064$ nm, $\omega = 1.17$ eV $P = 1$ kW, cw $N_r = 0$	$1 imes 10^{22}/{ m s}$	B = 9.6 T l = 7 m	$\sim 10^{-17}$

A. Ringwald (DESY)

IDM 2006, Rhodes, Greece

G. Zavattini – PVLAS Collaboration – Trieste 3/10/2006

regeneration rate ~ 0.33 ph/s assume: 0.01 Hz background, 0.3 efficiency <u>Measuring time with TES to have SNR = 1: ~ 10 s</u>

0

Scenario

0

0

TES detector

- Transition Edge Sensor
 - works as a bolometer
 - cryogenic temperatures (~100 mK)
 - potentially no background
 - spectroscopic ability
- Photon transport
 - fiber optic
 - 1064 nm interferential filter
- TES developed and provided by Genova INFN group led by F. Gatti

Rivelatore TES per PVLAS

(gruppo di Ge – F. Gatti)

- mattonelle da (25 μm×25 μm)
- caratterizzate a freddo

prossimamente (ottobre) -> test con fotoni

Conclusion

We will try do give a clear answer to one question: Are we generating an unknown particle?

A regeneration measurement is an APPEARANCE measurement

Appearance measurements are intrinsically less prone to systematics